Biosensor-aided high-throughput screening of hyper-producing cells for malonyl-CoA-derived products

نویسندگان

  • Heng Li
  • Wei Chen
  • Ruinan Jin
  • Jian-Ming Jin
  • Shuang-Yan Tang
چکیده

BACKGROUND Malonyl-coenzyme A (CoA) is an important biosynthetic precursor in vivo. Although Escherichia coli is a useful organism for biosynthetic applications, its malonyl-CoA level is too low. RESULTS To identify strains with the best potential for enhanced malonyl-CoA production, we developed a whole-cell biosensor for rapidly reporting intracellular malonyl-CoA concentrations. The biosensor was successfully applied as a high-throughput screening tool for identifying targets at a genome-wide scale that could be critical for improving the malonyl-CoA biosynthesis in vivo. The mutant strains selected synthesized significantly higher titers of the type III polyketide triacetic acid lactone (TAL), phloroglucinol, and free fatty acids compared to the wild-type strain, using malonyl-CoA as a precursor. CONCLUSION These results validated this novel whole-cell biosensor as a rapid and sensitive malonyl-CoA high-throughput screening tool. Further analysis of the mutant strains showed that the iron ion concentration is closely related to the intracellular malonyl-CoA biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product

Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p...

متن کامل

Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.

Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharom...

متن کامل

A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli

Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA,...

متن کامل

Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products.

Malonyl-CoA is the building block for fatty acid biosynthesis and also a precursor to various pharmaceutically and industrially valuable molecules, such as polyketides and biopolymers. However, intracellular malonyl-CoA is usually maintained at low levels, which poses great challenges to efficient microbial production of malonyl-CoA derived molecules. Inactivation of the malonyl-CoA consumption...

متن کامل

Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.

Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017